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Abstract. Regularized inversion methods for image reconstruction are used widely due to their tractability
and their ability to combine complex physical sensor models with useful regularity criteria. Such
methods motivated the recently developed Plug-and-Play prior method, which provides a framework
to use advanced denoising algorithms as regularizers in inversion. However, the need to formulate
regularized inversion as the solution to an optimization problem limits the expressiveness of possible
regularity conditions and physical sensor models. In this paper, we introduce the idea of consensus
equilibrium (CE), which generalizes regularized inversion to include a much wider variety of both
forward (or data fidelity) components and prior (or regularity) components without the need for
either to be expressed using a cost function. CE is based on the solution of a set of equilibrium
equations that balance data fit and regularity. In this framework, the problem of MAP estimation
in regularized inversion is replaced by the problem of solving these equilibrium equations, which can
be approached in multiple ways. The key contribution of CE is to provide a novel framework for
fusing multiple heterogeneous models of physical sensors or models learned from data. We describe
the derivation of the CE equations and prove that the solution of the CE equations generalizes the
standard MAP estimate under appropriate circumstances. We also discuss algorithms for solving
the CE equations, including a version of the Douglas–Rachford/alternating direction method of
multipliers algorithm with a novel form of preconditioning and Newton’s method, both standard
form and a Jacobian-free form using Krylov subspaces. We give several examples to illustrate the
idea of CE and the convergence properties of these algorithms and demonstrate this method on some
toy problems and on a denoising example in which we use an array of convolutional neural network
denoisers, none of which is tuned to match the noise level in a noisy image but which in consensus
can achieve a better result than any of them individually.
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1. Introduction. Over the past 30 years, statistical inversion has evolved from an inter-
esting theoretical idea to a proven practical approach. Most statistical inversion methods are
based on the maximum a posteriori (MAP) estimate, or more generally regularized inversion,
using a Bayesian framework, since this approach balances computational complexity with
achievable image quality. In its simplest form, regularized inversion is based on the solution
of the optimization problem

(1) x∗ = argmin
x

{f(x) + h(x)} ,

where f is the data fidelity function and h is the regularizing function. In the special case of
MAP estimation, f represents the forward model and h represents the prior model, given by

f(x) = − log pforward(y|x), h(x) = − log pprior(x),

where y is the data and x is the unknown to be recovered. The solution of equation (1)
balances the goals of fitting the data while also regularizing this fit according to the prior.

In more general settings, for example with multiple data terms from multimodal data
collection, a cost function can be decomposed as a sum of auxiliary (usually convex) functions:

minimize f(x) =
N∑
i=1

fi(x),

with variable x ∈ R
n and fi : R

n → R ∪ {+∞}. In consensus optimization, the minimization
of the original cost function is reformulated as the minimization of the sum of the auxiliary
functions, each a function of a separate variable, with the constraint that the separate variables
must share a common value:

(2) minimize
N∑
i=1

fi(xi) subject to xi = x, i = 1, . . . , N,

with variables x ∈ R
n, xi ∈ R

n, i = 1, . . . , N . This reformulation allows for the application
of the alternating direction method of multipliers (ADMM) or other efficient minimization
methods and applies to the original problem in (1) as well as many other problems. An
account of this approach with many variations and examples can be found in [4].

While regularized inversion and optimization problems more generally benefit from ex-
tensive theoretical results and powerful algorithms, they are also expressively limited. For
example, many of the best denoising algorithms cannot be put into the form of a simple op-
timization; see [6, 10]. Likewise, the behavior of denoising neural networks cannot generally
be captured via optimization. These successful approaches to inverse problems lie outside the
realm of optimization problems and give rise to the motivating question for this paper.

Question. How can we generalize the consensus optimization framework in (2) to encom-
pass models and operators that are not associated with an optimization problem, and how
can we find solutions efficiently?
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There is a vast and quickly growing literature on methods and results for convex and
consensus optimization. Seminal work in this area includes the work of Lions and Mercier
[19], as well as the PhD thesis of Eckstein [11] and the work of Eckstein and Bertsekas [12]. We
do not provide a complete survey of this literature since our focus is on a framework beyond
optimization, but some starting points for this area are [2, 4, 5].

As for approaches to fuse a data fidelity model with a denoiser that is not based on an
optimization problem, the first attempt, to our knowledge, is [29]. The goal of this approach,
called the Plug-and-Play prior method, is to replace the prior model in the Bayesian for-
mulation with a denoising operator. This is done by taking the ADMM algorithm, which is
often used to find solutions for consensus optimization problems, and replacing one of the
optimization steps (proximal maps) of this algorithm with the output of a denoiser. Recently,
a number of authors have built on the Plug-and-Play method as a way to construct implicit
prior models through the use of denoising operators; see [25, 28, 27, 30]. In [28], conditions
are given on the denoising operator that will ensure it is a proximal mapping, so that the
MAP estimate exists and the ADMM algorithm converges. However, these conditions impose
relatively strong symmetry conditions on the denoising operator that may not occur in prac-
tice. For applications where fixed point convergence is sufficient, it is possible to relax the
conditions on the denoising operator by iteratively controlling the step size in the proximal
map for the forward model and the noise level for the denoiser [7].

The paper [24] provides a different approach to building on the idea of Plug-and-Play. That
paper uses the classical forward model plus the prior model in the framework of optimization
but constructs a prior term directly from the denoising engine; this is called regularization
by denoising (RED). For a denoiser x �→ H(x), the prior term is given by λxT (x − H(x)).
This approach is formulated as an optimization problem associated with any denoiser, but in
the case that the denoiser itself is obtained from a prior, the RED prior is different from the
denoiser prior; see [22]. Other approaches that build on Plug-and-Play include [21], which
uses primal-dual splitting in place of an ADMM approach, and [17], which uses fast iterative
shrinkage-thresholding algorithm in a Plug-and-Play framework to address a nonlinear inverse
scattering problem.

In this paper, we introduce consensus equilibrium (CE) as an optimization-free general-
ization of regularized inversion and consensus optimization that can be used to fuse multiple
sources of information implemented as maps such as denoisers, deblurring maps, data fidelity
maps, proximal maps, etc. We show that CE generalizes consensus optimization problems in
the sense that if the defining maps are all proximal maps associated with convex functions,
then any CE solution is also a solution to the corresponding consensus optimization problem.
However, CE can still exist in the more general case when the defining maps are not proximal
maps; in this case, there is no underlying optimization. In the case of a single data fidelity
term and a single denoiser, the solution has the interpretation of achieving the best denoised
inverse of the data. That is, the proximal map associated with the forward model pulls the
current point towards a more accurate fit to data, while the denoising operator pulls the cur-
rent point towards a “less noisy” image. We illustrate this in a toy example in two dimensions:
the CE is given by a balance between two competing forces.

In addition to introducing the CE equations, we discuss ways to solve them and give
several examples. We describe a version of the Douglas–Rachford (DR)/ADMM algorithm
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with a novel form of anisotropic preconditioning. We also apply Newton’s method, both in
standard form and in a Jacobian-free form using Krylov subspaces.

In the experimental results section, we give several examples to illustrate the idea of
CE and the convergence properties of these algorithms. We first demonstrate the proposed
algorithms on some toy problems in order to illustrate properties of the method. We next use
the CE framework to solve an image denoising problem using an array of convolutional neural
network (CNN) denoisers, none of which is tuned to match the noise level in a noisy image.
Our results demonstrate that that the CE result is better than any of the individually applied
CNN denoisers.

2. Consensus equilibrium: Optimization and beyond. In this section we formulate the
CE equations, show that they encompass a form of consensus optimization in the case of
proximal maps, and describe the ways that CE goes beyond the optimization framework.

2.1. Consensus equilibrium for proximal maps. We begin with a slight generalization of
(2):

(3) minimize
N∑
i=1

μifi(xi) subject to xi = x, i = 1, . . . , N,

with variables x ∈ R
n, xi ∈ R

n, i = 1, . . . , N , and weights μi > 0, i = 1, . . . , N , that sum
to 1 (an arbitrary normalization, but one that supports the idea of weighted average that we
use later). From the point of view of optimization, each weight μi could be absorbed into fi.
However, in CE we move beyond this optimization framework to the case in which the fi may
be defined only implicitly or the case in which there is no optimization, but only mappings
that play a role similar to the proximal maps that arise in the ADMM approach to solving
(3). The formulation in (3) serves as motivation and the foundation on which we build.

To extend the optimization framework of (3) to CE, we start with N vector-valued maps,
Fi : Rn → R

n, i = 1, . . . , N . The CE for these maps is defined as any solution (x∗,u∗) ∈
R
n × R

nN that solves the equations

Fi(x
∗ + u∗i ) = x∗, i = 1, . . . , N,(4)

ū∗
μ = 0.(5)

Here u is a vector in R
nN obtained by stacking the vectors u1, . . . , uN , and ūμ is the weighted

average
∑N

i=1 μiui.
In order to relate CE to consensus optimization, first consider the special case in which

each fi : R
n → R ∪ {+∞} in (3) is a proper, closed, convex function and each Fi is a

corresponding proximal map, i.e., a map of the form

(6) Fi(x) = argmin
v

{‖v − x‖2
2σ2

+ fi(v)

}
.

Methods such as ADMM, DR, and other variants of the proximal point algorithm apply
these maps in sequence or in parallel with well-chosen arguments, together with some map to
promote xi = z for all i, in order to solve (3); see, e.g., [3, 4, 9, 11, 12, 19, 26]. In the setting of
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Bayesian regularized inversion, each fi represents a data fidelity term or regularizing function.
We allow for the possibility that fi enforces some hard constraints by taking on the value +∞.

Our first theorem states that when the maps Fi are all proximal maps as described above,
the solutions to the CE problem are exactly the solutions to the consensus optimization
problem of equation (3). In this sense, CE encompasses the optimization framework of (3).

Theorem 1. For i = 1, . . . , N , let fi be a proper, lower-semicontinuous, convex function
on R

n, and let μi > 0 with
∑N

i=1 μi = 1. Define f =
∑N

i=1 μifi, and assume f is finite on
some open set in R

n. Let Fi be the proximal maps as in (6). Then the set of solutions to the
CE equations of (4) and (5) is exactly the set of solutions to the minimization problem (3).

The proof is contained in the appendix.

2.2. Consensus equilibrium beyond optimization. Theorem 1 tells us that CE extends
consensus optimization, but as noted above, the novelty of CE is not as a recharacterization
of (3) in the case of proximal maps but rather as a framework that applies even when some
of the Fi are not proximal mappings and there is no underlying optimization problem to be
solved. The Plug-and-Play reconstruction method of [29], which yields high quality solutions
for important applications in tomography [28] and denoising [25], is, to our knowledge, the
first method to use denoisers that do not arise from an optimization for regularized inversion.
As we show below, the CE framework also encompasses the Plug-and-Play framework in that
if Plug-and-Play converges, then the result is also a CE solution. However, Plug-and-Play
grew out of ADMM, and the operators that yield convergence in ADMM are more limited
than we would like. Hence, for both consensus optimization and Plug-and-Play priors, CE
encompasses the original method but also allows for a wider variety of operators and solution
algorithms.

An important point about moving beyond the optimization framework is that a given
set of maps Fi may lead to multiple possible CE solutions. This may also happen in the
optimization framework when the fi are not strictly convex since there may be multiple local
minima. In the optimization case, the objective function can sometimes be used to select
among local minima. The analogous approach for CE is to choose a solution that minimizes
the size of ū∗

μ, e.g., the L1 or L2 norm of ū∗. This corresponds in some sense to minimizing
the tension among the competing forces balanced to find equilibrium.

3. Solving the equilibrium equations. In this section, we rewrite the CE equations as
an unconstrained system of equations and then use this to express the solution in terms
of a fixed point problem. We also discuss particular methods of solution, including novel
preconditioning methods and methods to solve for a wide range of possible F. We first
introduce some additional notation. For v ∈ R

nN , with v = (vT1 , . . . , v
T
N ) and each vj ∈ R

n,
define F,Gμ : RnN → R

nN by

(7) F(v) =

⎛
⎜⎝

F1(v1)
...

FN (vN )

⎞
⎟⎠ and Gμ(v) =

⎛
⎜⎝
v̄μ
...
v̄μ

⎞
⎟⎠ ,

where Gμ has the important interpretation of redistributing the weighted average of the vector

components given by v̄μ =
∑N

i=1 μivi across each of the output components.
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Also, for x ∈ R
n, let x̂ denote the vector obtained by stacking N copies of x. With this

notation, the CE equations are given by

F(x̂∗ + u∗) = x̂∗,(8)

ū∗
μ = 0.

This notation allows us to reformulate the CE equations as the solution to a system of
equations.

Theorem 2. The point (x∗,u∗) is a solution of the CE equations (4) and (5) if and only if
the point v∗ = x̂∗ + u∗ satisfies v̄∗

μ = x∗ and

F(v∗) = Gμ(v
∗).(9)

Proof. Let (x∗,u∗) be a solution to the CE equations, and let v∗ = x̂∗ + u∗. Linearity
of Gμ together with ū∗

μ = 0 gives Gμ(v
∗) = x̂∗, so in particular, v̄∗

μ = x∗. Using this in (8)
gives (9).

Conversely, if v∗ satisfies (9), define x∗ = v̄∗
μ and u∗ = v∗ − x̂∗. Then (4) and (5) are

satisfied by definition of x∗ and (9).

We use this to reformulate CE as a fixed point problem.

Corollary 3 (consensus equilibrium as fixed point). The point (x∗,u∗) is a solution of the
CE equations (4) and (5) if and only if the point v∗ = x̂∗ + u∗ satisfies v̄∗

μ = x∗ and

(2Gμ − I)(2F− I)v∗ = v∗.(10)

When F is a proximal map for a function f , then 2F−I is known as the reflected resolvent
of f . Discussion and results concerning this operator can be found in [2, 12, 15] among many
other places. This fixed point formulation is closely related to the fixed point formulation
for minimizing the sum of two functions using DR splitting; this is seen clearly in section 4
of [13] among other places. The form given here is somewhat different in that the reflected
resolvents are computed in parallel and then averaged, as opposed to the standard sequential
form. Beyond that, the novelty here is in the equivalence of this formulation with the CE
formulation.

Proof of Corollary 3. By Theorem 2, (x∗,u∗) is a solution of (4) and (5) if and only if
v∗ = x̂∗ + u∗ satisfies v̄∗ = x∗ and (9). From (9) we have (2F − I)v∗ = (2Gμ − I)v∗. A
calculation shows that GμGμ = Gμ, so (2Gμ − I)(2Gμ − I) = I by linearity of Gμ. Hence
applying 2Gμ − I to both sides gives (10). Reversing these steps returns from (10) to (9).

3.1. Anisotropic preconditioned Mann iteration for nonexpansive maps. Define T =
(2Gμ− I)(2F− I). When T is nonexpansive and has a fixed point, we can use Mann iteration
to find a fixed point of T as required by (10). For a fixed parameter ρ ∈ (0, 1), this takes the
form

(11) wk+1 = (1− ρ)wk + ρT(wk)
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with iterates guaranteed to converge to a fixed point of T. In the context of minimization
problems in which F and G are both proximal maps, and depending on the choice of ρ, itera-
tions of this form are essentially variants of the proximal point algorithm and give rise to the
(generalized) DR algorithm, the Peaceman–Rachford algorithm, and the ADMM algorithm,
including overrelaxed and underrelaxed variants of ADMM. In the case of N = 2 and ρ = 0.5,
the form in (11) is equivalent up to a change of variables to the standard ADMM algorithm;
other values of ρ give overrelaxed and underrelaxed variants. Early work in this direction ap-
pears in [11] and [12]. A concise discussion is found in [15], which together with [14] provides a
preconditioned version of this algorithm in the case of N = 2. This preconditioning is obtained
by replacing the original minimization of f(x)+g(x) by minimization of f(Dq)+g(Dq), which
gives rise to iterations involving the conjugate proximal maps D−1FD(Dq), where FD is the
proximal map for f as in (6) using the norm ‖·‖(DDT )−1 in place of the usual Euclidean metric.
[15] includes some results about the rate of convergence as a function of D. In some cases, a
larger value of ρ leads to faster convergence relative to ρ = 0.5. There are also results on con-
vergence in the case that fixed ρ is replaced by a sequence of ρk such that

∑
k ρk(1− ρk) =∞

[2]. Further discussion and early work on this approach is found in [11, 12]. With some abuse
of nomenclature, we use ADMM below to refer to Mann iteration with ρ = 0.5.

Here we describe an alternative preconditioning approach for Mann iteration in which we
use an invertible linear map H in place of the scalar ρ in (11). In this approach, T can be
any nonexpansive map, and H can be any symmetric matrix with H and I−H both positive
definite.

Theorem 4. Let H be a positive definite, symmetric matrix, and let T be nonexpansive on
R
nN with at least one fixed point. Suppose that the largest eigenvalue of H is strictly less

than 1. For any v0 in R
nN , define

(12) vk+1 = (I−H)vk +HT(vk)

for each k ≥ 0. Then the sequence {vk} converges to a fixed point of T.

The idea of the proof is similar to the proof of convergence for Mann iteration given in
[26], but using a norm that weights differently the orthogonal components arising from the
spectral decomposition of H. The proof is contained in the appendix.

We note that in the case that each fi is a proper, closed, convex function on R
n and Fi is the

proximal map as in (6), then the map 2F− I is nonexpansive, so this preconditioning method
can be used to find a solution to the problem in (3). The asymptotic rate of convergence with
this method is not significantly different from that obtained with the isotropic scaling obtained
with a scalar ρ. However, we have found this approach to be useful for accelerating convergence
in certain tomography problems in which various frequency components converge at different
rates, leading sometimes to visible oscillations in the reconstructions as a function of iteration
number. An appropriate choice of the preconditioner H can dampen these oscillations and
provide faster convergence in the initial few iterations. We will explore this example and
related algorithmic considerations further in a future paper.
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3.2. Beyond nonexpansive maps. The iterative algorithms obtained from (11) and (12)
give guaranteed global convergence when T is nonexpansive and ρ (or H) satisfy appropriate
conditions. However, the iterates of (11) may still be convergent for more general maps T .
We illustrate this behavior in Case 1 of section 4.2.

In fact, when T is differentiable at a fixed point, the rate of convergence is closely related
to the spectrum of the linearization of T near this fixed point. The parameter ρ in (11)
maintains a fixed point at w∗ = T (w∗) but changes the linear part of the iterated map to
have eigenvalues μj = ρλj + (1 − ρ), where λ1, . . . , λn are the eigenvalues of the linear part
of T . The iterates of (11) converge locally exactly when all of these μj are strictly inside the
unit disk in the complex plane. This can be achieved for sufficiently small ρ precisely when
the real part of each λj is less than 1. Since there is no constraint on the complex part of the
eigenvalues, the map T may be quite expansive in some directions. In this case, the optimal
rate of convergence is obtained when ρ is chosen so that the eigenvalues μj all lie within a
minimum radius disk about the origin.

The use of ρ to affect convergence rate and/or to promote convergence is closely related to
the ideas of overrelaxation and underrelaxation as applied in a variety of contexts. See, e.g.,
[16] for further discussion in the context of linear systems. In the current setting, the use of
ρ < 1/2 is a form of underrelaxation that is related to methods for iteratively solving ill-posed
linear systems. In the following theorem, the main idea is to make use of underrelaxation in
order to shrink the eigenvalues of the resulting operator to the unit disk and thus guarantee
convergence.

Theorem 5 (local convergence of Mann iterates). Let F : Rn → R
n and G : Rn → R

n be
maps such that T = (2G − I)(2F − I) has a fixed point w∗. Suppose that T is differentiable
at w∗ and that the Jacobian of T at w∗ has eigenvalues λ1, . . . , λn with the real part of λj

strictly less than 1 for all j. Then there are ρ ∈ (0, 1) and an open set U containing w∗ such
that for any initial point w0 in U, the iterates defined by (11) converge to w∗.

The proof of this theorem is given in Appendix A.

3.3. Newton’s method. By formulating the CE as a solution to F(v) −Gμ(v) = 0, we
can apply a variety of root-finding methods to find solutions. Likewise, rewriting (10) as
T (v)− v = 0 gives the same set of options.

Let H be a smooth map from R
n to R

n. The basic form of Newton’s method for solving
H(x) = 0 is to start with a vector x0 and look for a vector dx to solve H(x0 + dx) = 0. A
first-order approximation gives JH(x0)dx = −H(x0), where JH(x0) is the Jacobian of H at
x0. If this Jacobian is invertible, this equation can be solved for dx to give x1 = x0 + dx and
the method iterated. There are a wide variety of results concerning the convergence of this
method with and without preconditioning, with various inexact steps, etc. An overview and
further references are available in [20].

For large scale problems, calculating the Jacobian can be prohibitively expensive. The
Jacobian-free Newton–Krylov (JFNK) method is one approach to avoid the need for a full
calculation of the Jacobian. Let J = JH(x0). The key idea in Newton–Krylov methods is
that instead of trying to solve Jdx = −H(x0) exactly, we instead minimize ‖H(x0) + Jdx‖
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over the vectors dx in a Krylov subspace, Kj . This subspace is defined by first calculating the
residual r = −H(x0) and then taking

Kj = span{r, Jr, . . . , J j−1r}.
The basis in this form is typically highly ill conditioned, so the generalized minimal residual
method is often used to produce an orthonormal basis and solve the minimization problem
over this subspace. This form requires only multiplication of a vector by the Jacobian, which
can be approximated as

Jr ≈ H(x0 + εr)−H(x0)

ε
.

Applying this to produce Kj requires j applications of the map H together with the creation
of the Arnoldi basis elements, which can then be used to find the minimizing dx by reducing
to a standard least squares problem of dimension j. Various stopping conditions can be used
to determine an appropriate j. These calculations take the place of the solution of Jdx =
−H(x0). In cases for which there are many contracting directions and only a few expanding
directions for Newton’s method near the solution point, the JFNK method can be quite
efficient. A more complete description with a discussion of the benefits and pitfalls, approaches
to preconditioning, and many further references is contained in [18].

We note in connection with the previous section that if H is chosen to be (I− JT(v
k))−1

in (12), then the choice of vk+1 in Theorem 4 is an exact Newton step applied to I−T. That
is, the formula for the step in Newton’s method in this case is

vk+1 − vk = −(I− JT (v
k))−1(I−T)vk

or
vk+1 = (I−H)vk +HTvk,

which is the same as the formula in Theorem 4.
In the examples below, we use standard Newton’s method applied to both F−G and T−I

in the first example and JFNK applied to F −G in the second. Because of the connection
with Mann iteration just given, we use the term Newton Mann to describe Newton’s method
applied to T− I.

3.4. Other approaches. An alternative approach is to convert the CE equations back
into an optimization framework by considering the residual error norm given by

R(v)
Δ
= ‖F(v)−Gμ(v)‖(13)

and minimizing R2(v) over v. Assuming that a solution of the CE equations exists, then that
solution is also a minimum of this objective function. In the case that F is twice continuously
differentiable, a calculation using the facts that R(v∗) = 0 and thatGμ is linear shows that the
Hessian of R2(v) is 2ATA+O(‖v−v∗‖), where Av = JF(v

∗)v−Gμv. Hence R
2(v) is locally

convex near v∗ as long as A has no eigenvalue equal to 0. Since Gμ is a projection, its only
eigenvalues are 0 and 1; hence this is equivalent to saying that JF(v

∗) does not have 1 as an
eigenvalue. If A does have an eigenvalue 0, then a perturbation of the form Fε(v) = F(v)+εv
produces a unique solution, which can be followed in a homotopy scheme as ε decreases to 0.
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One possible algorithm for this approach is the Gauss–Newton method, which can be used
to minimize a sum of squared function values and which does not require second derivatives.

We note that the residual error of equation (13) is also useful as a general measure of
convergence when computing the CE solution; we use this in plots below.

Other candidate solution algorithms include the forward-backward algorithm and related
algorithms as presented in [9]. We leave further investigation of efficient algorithms for solving
the CE equations to future research.

4. Experimental results. Here we provide some computational examples of varying com-
plexity. For each of these examples, at least one of the component maps Fi is not a proximal
mapping, so the traditional optimization formulation of (1) or (3) is not applicable.

We start with a toy model in two dimensions to illustrate the ideas, then follow with some
more complex examples.

4.1. Toy model. In this example we have v1 = (v11, v12)
T , v2 = (v21, v22)

T , both in R
2,

and maps F1 and F2 defined by

F1(v1) =
(
I + σ2ATA

)−1
(v1 + σ2AT y),

F2(v2) = 1.1(v21 + 0.2, v22 − 0.2 sin(2v22))
T .

In this case, F1 is a proximal map as in (6) corresponding to f(x) = ‖Ax− y‖2/2, and F2 is
a weakly expanding map designed to illustrate the properties of CE. We use σ = 1 and

A =

[
0.3 0.6
0.4 0.5

]
, y =

[
1
1

]
.

We take μ1 = μ2 = 0.5 and so write G for Gμ. We apply Newton iterations to F(v)−G(v) = 0
and to the fixed point formulation T (v)−v = 0. In both cases, the Jacobian of F2 is evaluated
only at the initial point.

Figure 1 shows the vectors obtained from each of the maps F1 and F2. Blue line segments
are vectors from a point v1 to F1(v1), and red line segments are vectors from a point v2 to
F2(v2). The starting points of each pair of red and blue vectors are chosen so that they have
a common ending point, signified by a black dot. Open squares show the trajectories of vk1 in
blue and vk2 in red. The trajectories converge to points for which the corresponding red and
blue vectors have a common endpoint and are equal in magnitude and opposite in direction;
this is the CE solution. The plots shown are for Newton’s method applied to F − G; the
plots for Newton’s method applied to T− I are similar (not shown). In the right panel of this
figure, we use the true fixed point to plot error versus iterate for this example using all three
methods. The expansion in F2 prevents ADMM from converging in this example.

4.2. Stochastic matrix. The next example uses the proximal map form for F1 as in
the previous example, although now with dimension n = 100. A and y were chosen using the
random number generator rand in MATLAB, approximating the uniform distribution on [0, 1]
in each component. The map F2 has the form F2(v) = Wv; here W is constructed by first
choosing entries at random in the interval [0, 1] as for A, then replacing the diagonal entry
by the maximum entry in that row (in which case the maximum entry may appear twice in
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Figure 1. Left: Map fields and trajectories for a two-dimensional toy example using Newton’s method
applied to solve F(v)−G(v) = 0. Blue segments show the map v1 �→ F1(v1), red segments show v2 �→ F2(v2),
and black dots show the common endpoints of these maps. Blue and red open squares show the points vk1 and
vk2 , respectively. Filled red and blue circles show the CE solution. Middle: Zoom in near the fixed point of
the plot on the left. Right: Error ‖F(vk) −G(vk)‖ as a function of iteration for Newton’s method applied to
F−G, Newton’s method applied to T− I (labeled as Newton Mann), and standard Mann iteration with ρ = 0.5
(labeled as ADMM).

one row), and then normalizing so that each row sums to 1. This mimics some of the features
in a weight matrix appearing in denoisers such as nonlocal means [6] but is designed to allow
us to compute an exact analytic solution of the CE equations. In particular, since W is not
symmetric, F2 cannot be a proximal map, as shown in [28].

In order to illustrate possible convergence behaviors, we first fix the matrices A and W and
the vector y as above and then use a one-parameter family of maps F2,r(v) = rWv+(1−r)I/2.
When 0 ≤ r ≤ 1, this map averages W and I/2. The map I/2 is a proximal map as in (6) with
σ = 1 and fi(v) = ‖v‖2/2, i.e., the proximal map associated with a quadratic regularization
term. In the framework of Corollary 3, the map F2,r satisfies 2F2,r(v) − v = r(2W − I)v.
Hence the scaling of r controls the expansiveness of one of the component maps in 2F−I, and
hence the expansiveness of the operator in (10) through the averaging operator Gμ. For the
examples here, we choose r to be 1.02 and 1.06. As described below, with appropriate choices
of parameters, the JFNK method converges for both examples, while ADMM converges for
the first one only.

Recall that if the Lipschitz constant, L(T ), is strictly less than 1, then the operator T
is a contraction, and if L(T ) ≤ 1, we say it is nonexpansive. Moreover, for linear operators,
L(T ) = σmax, where σmax is the maximum singular value of T , and σmax ≥ |λmax|, where
λmax is the eigenvalue with greatest magnitude.

Case 1, r = 1.02. In this case, T has Lipschitz constant L(T) > 1, and the conditions of The-
orem 4 or similar theorems on the convergence of Mann iteration for the convergence
of nonexpansive maps do not hold. However, in this case, T is affine (linear map plus
constant), and all eigenvalues of the linear part of (T + I)/2 lie strictly inside the
unit circle. From (11) with ρ = 1/2 and basic linear algebra, this means that Mann
iteration converges. This is confirmed in Figure 2. In this example, convergence for
Mann iteration can be improved by taking ρ to be 0.8, in which case the convergence
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Figure 2. Residual norm ‖F (vk) −G(vk)‖ and root mean square error ‖vk − v∗‖/√n versus iteration.
Left two panels (Case 1): T has Lipschitz constant larger than 1, but all eigenvalues have real part strictly less
than 1. Both methods converge. Right two panels (Case 2): T has an eigenvalue with real part larger than 1.
JFNK converges, while ADMM diverges.

is marginally better than that for JFNK. For this example, we used a Krylov subspace
of dimension 10, so that each Newton step requires 10 function evaluations. This is
indicated by closed circles in the plots.

Case 2, r = 1.06. In this case, T has Lipschitz constant L(T) > 1, and there is an eigenvalue
with real part approximately 1.0039, so averaging T with the identity as in Mann
iteration will maintain an eigenvalue larger than 1. In particular, Mann iteration
with ρ = 1/2 (labelled as ADMM) does not converge, but the JFNK algorithm does.
For this example, we used a Krylov subspace of dimension 75, so that each Newton
step requires 75 function evaluations. This is indicated by closed circles in the plots.

4.3. Image denoising with multiple neural networks. The third example we give is an
image denoising problem using multiple deep neural networks. This problem is more complex
in that we use several neural networks, none of which is tuned to match the noise in the image
to be denoised. Nevertheless, we show that CE is often able to outperform each individual
network. The images and code for this section are available at [1].

The forward model of image denoising is described by the following linear equation:

y = x+ η,

where x ∈ R
n is latent unknown image, η ∼ N (0, σ2

ηI) is independently and identically
distributed Gaussian noise, and y ∈ R

n is the corrupted observation. Our motivation is to
find an estimate x∗ ∈ R

n by solving the CE equation analogous to the classical MAP approach:

(14) x∗ = argmin
x∈Rn

1

2σ2
η

‖y − x‖2 − log p(x),

where p(x) is the prior of x. However, instead of a prior function, which would induce a
proximal map, we will use a set of CNNs, which will play the role of regularization in the way
that a prior term does, but which are almost certainly not themselves proximal maps for any
function.

To define the CE operators Fi, we consider a set of K image denoisers. Specifically, we use
the denoising convolutional neural network (DnCNN) proposed by Zhang et al. [32]. In the
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code provided by the authors,1 there are five DnCNNs trained at five different noise levels:
σ1 = 10/255, σ2 = 15/255, σ3 = 25/255, σ4 = 35/255, and σ5 = 50/255. In other words, the
user has to choose the appropriate DnCNN to match the actual noise level ση. In the CE
framework, we see that Fi is the operator

(15) Fi(vi) = DnCNN(vi with denoising strength σi).

The (K + 1)st CE operator FK+1 is the proximal map of the likelihood function:

(16) FK+1(vK+1) = argmin
x∈Rn

1

2σ2
η

‖y − x‖2 + 1

2σ2
‖vK+1 − x‖2,

where σ is an internal parameter controlling the strength of the regularization ‖vK+1 − x‖2.
In this example, we set σ = ση for simplicity.

To make the algorithm more adaptive to the data, we use weights μi =
pi∑K+1

i=1 pi
, where

(17) pi = exp

{
−(ση − σi)

2

2h2

}
and pK+1 =

K∑
i=1

pi.

In this pair of equations, pi measures the deviation between the actual noise level ση and the
denoising strength of the neural networks σi. The parameter h = 5/255 controls the cut-off.
Therefore, among the five neural networks, pi weights more heavily the relevant networks.
The (K + 1)st weight pK+1 is the weight of the map to fit to data. Its value is chosen to be
the sum of the weights of the denoisers to provide appropriate balance between the likelihood
and the denoisers.

Figures 3 and 4 show some results using noise levels of ση = 20/255 and 40/255, respec-
tively. Notice that none of these noise levels is covered by the trained DnCNNs. Table 1
shows resulting SNR values for the full set of experiments using eight test images and three
noise levels of ση = 20/255, 30/255, 40/255. The results in the center of the table indicate the
result of applying an individual CNN to the noisy image. Because of the form of FK+1 in (16)
and σ = ση, the result of this single application of the CNN is the same as the CE solution
obtained by using only that single CNN together with FK+1.

Notice that in almost all cases the CE of the full group has the highest peak signal-
to-noise ratio (PSNR) when compared to the individual application of the DnCNNs. Also,
the improvement in terms of the PSNR is quite substantial for noise levels ση = 20/255 and
ση = 30/255. For ση = 40/255, CE still offers PSNR improvement except for House256, which
is an image with many smooth regions. In addition, visual inspection of the images shows
that the CE result yields the best visual detail while also removing the noise most effectively.
While DnCNN denoisers can be very effective, they must be trained in advance using the
correct noise level. This demonstrates that the CE can be used to generate a better result by
blending together multiple pretrained DnCNNs.

In order to illustrate that the CE solution outperforms a well-chosen linear combination
of the outputs from each denoiser, we report a baseline combination result in Table 1. The
baseline results are generated by

1Code available at https://github.com/cszn/ircnn.

https://github.com/cszn/ircnn
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Noiseless Noisy ση = 40/255 DnCNN10, 16.67dB DnCNN15, 17.53dB

DnCNN25, 19.92dB DnCNN35, 26.44dB DnCNN50, 27.39dB CE, 27.77dB

Figure 3. Image denoising experiment for Man512 when ση = 40/255. Notice that the CE result has the
highest signal-to-noise ratio (SNR) when compared to individual CNN denoisers trained on varying noise levels.

Noiseless Noisy ση = 20/255 DnCNN10, 23.98dB DnCNN15, 28.25dB

DnCNN25, 31.33dB DnCNN35, 29.51dB DnCNN50, 27.93dB CE, 31.79dB

Figure 4. Image denoising experiment for Peppers256 when ση = 20/255. Notice that the CE result has
the highest SNR when compared to individual CNN denoisers trained on varying noise levels.
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Table 1
Image denoising results for actual noise level ση ∈ {20, 30, 40}/255.

DnCNN Matched
Image 10 15 25 35 50 Baseline CE DnCNN

σ = 20/255
Barbara512 23.99 28.02 30.49 28.11 25.71 29.80 30.97 31.02
Boat512 23.98 27.92 30.61 28.73 27.03 29.86 31.08 31.15

Cameraman256 24.12 28.04 30.20 28.52 27.20 29.88 31.05 31.07
Hill512 23.93 27.81 30.34 28.68 27.20 29.78 30.88 30.92

House256 24.03 28.70 33.70 32.32 30.69 31.38 33.82 33.97
Lena512 24.07 28.59 33.06 31.13 29.59 31.12 33.35 33.47
Man512 23.94 27.89 30.41 28.46 27.02 29.79 31.00 31.08

Peppers256 23.98 28.25 31.33 29.51 27.93 30.27 31.79 31.80

σ = 30/255
Barbara512 19.49 21.01 26.86 28.49 26.15 28.49 28.98 28.86
Boat512 19.48 21.02 26.96 28.92 27.20 28.81 29.38 29.36

Cameraman256 19.62 21.14 27.11 28.62 27.23 28.77 29.18 29.25
Hill512 19.48 21.01 26.78 28.91 27.38 28.79 29.35 29.33

House256 19.44 21.05 28.48 32.17 30.68 31.24 32.39 32.32
Lena512 19.49 21.10 28.18 31.37 29.78 30.71 31.73 31.69
Man512 19.48 21.01 26.87 28.77 27.21 28.73 29.28 29.29

Peppers256 19.48 21.00 27.40 29.45 27.96 29.25 29.85 29.81

σ = 40/255
Barbara512 16.69 17.54 19.93 26.05 26.51 26.57 27.14 27.32
Boat512 16.66 17.52 19.93 26.50 27.36 27.02 27.82 28.12

Cameraman256 16.81 17.65 20.13 26.51 27.24 26.98 27.68 27.96
Hill512 16.66 17.53 19.92 26.47 27.56 27.05 27.90 28.23

House256 16.61 17.50 20.06 28.30 30.57 29.00 30.47 31.04
Lena512 16.66 17.55 20.04 28.01 29.88 28.67 29.95 30.38
Man512 16.67 17.53 19.92 26.44 27.39 26.99 27.77 28.11

Peppers256 16.67 17.53 19.93 26.79 27.87 27.29 28.09 28.38

x̂baseline =

n∑
i=1

μix̂i,

where {x̂i} are the initial estimates provided by the denoisers and μi is defined through 17
without pK+1. That is, we use the same weights as those for CE, excluding the weight for
the likelihood term and rescaled to sum to 1 after this exclusion. Therefore, x̂baseline can be
considered as a linear combination of the initial estimates, with weights defined by the distance
between the current noise level and the trained noise levels. The results in Table 1 show that
while x̂baseline very occasionally outperforms the best of the individual denoisers, it is usually
worse than the best individual denoiser and is uniformly worse than CE. In the last column of
Table 1 we show the result of DnCNN trained at a noise level matched with the actual noise
level. It is interesting to note that CE compares favorably with the matched DnCNN in many
cases, except for large sigma, where the matched DnCNN is uniformly better.

We note that [31] uses a linear transformation depending on the noise level of a noisy
image in order to match the noise level of a trained neural network, and then applies the
inverse linear transformation to the output. This provides another approach to the example
above but doesn’t include the ability of CE to combine multiple sources of influence without a
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predetermined conversion from one to the other. We should also point out the recent work of
Choi, Elgendy, and Chan [8], which demonstrates an optimal mechanism of combining image
denoisers.

5. Conclusion. We presented a new framework for image reconstruction, which we term
CE. The distinguishing feature of the CE solution is that it is defined by a balance among
operators rather than the minimum of a cost function. The CE solution is given by the con-
sensus vector that arises simultaneously from the balance of multiple operators, which may
include various kinds of image processing operations. In the case of conventional regular-
ized inversion, for which the optimization framework holds, the CE solution agrees with the
usual MAP estimate, but CE also applies to a wide array of problems for which there is no
corresponding optimization formulation.

We discussed several algorithms for solving the CE equations, including a novel anisotropic
preconditioned Mann iteration and a JFNK method. We also introduced a novel precondition
method for accelerating the Mann iterations used to solve the CE equations. There is a great
deal of room to explore other methods for finding CE solutions as well as for formulating other
equilibrium conditions.

Our experimental results, on a variety of problems with varying complexity, demonstrate
that the CE approach can solve problems for which there is no corresponding regularized
optimization and can in some cases achieve consensus results that are better than any of the
individual operators. In particular, we showed how the CE can be used to integrate a number
of CNN denoisers, thereby achieving a better result than any individual denoiser.

A. Appendix: Proofs.

Proof of Theorem 1. In order to use σ2 > 0 as in (6), we multiply the objective function
in (3) by σ2, which does not change the solution. Define the Lagrangian associated with this
scaled problem as

L(x, (xi)
N
i=1, (λi)

N
i=1) =

N∑
i=1

(σ2μifi(xi) + (x− xi)
Tλi),

where the λi ∈ R
n are the Lagrange multipliers for the equality constraints xi = x. Since the

fi are all convex and lower-semicontinuous, the first-order KKT conditions are necessary and
sufficient for optimality [23, Theorem 28.3]. At a solution point (x∗, (x∗i )

N
i=1, (λ

∗
i )

N
i=1), these

conditions are given by

∇xL(x
∗, (x∗i )

N
i=1, (λ

∗
i )

N
i=1) = 0,

∂xiL(x
∗, (x∗i )

N
i=1, (λ

∗
i )

N
i=1)  0 ∀i = 1, . . . , N,

x∗i − x∗ = 0 ∀i = 1, . . . , N.

where ∂xi is the subdifferential with respect to xi. These convert to

N∑
i=1

λ∗
i = 0,(18)

σ2μi∂fi(x
∗
i )  λ∗

i ∀i = 1, . . . , N,(19)

x∗i = x∗ ∀i = 1, . . . , N.(20)
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Define u∗i = λ∗
i /μi, in which case (18) is the same as (5). Next, use x∗i = x∗ from (20) in (19),

and cancel μi to get σ2∂fi(x
∗)  u∗i for all i. Adding x∗ to both sides gives x∗ + σ2∂fi(x

∗) 
x∗ + u∗i or

(I + σ2∂fi)(x
∗)  x∗ + u∗i .

Since the fi are convex and σ2 > 0, we can invert to get x∗ = (I+σ2∂fi)
−1(x∗+u∗i ). From [2,

Proposition 16.34], this is equivalent to (4) in the case that Fi is the proximal map of (6).

Proof of Theorem 4. Since H is symmetric and positive definite, there is an orthogonal
matrix Q and a diagonal matrix Λ with Λjj = λj > 0 for all j and H = QΛQT . Let qj be the
jth column of Q, and let πjv = (qTj v)qj be orthogonal projection onto the span of qj . Define

the associated norm ‖v‖j = ‖πjv‖. Also, let λ be the product λ1 · · ·λN , and let λ̂j = λ/λj

(i.e., the product of all λ1 through λN except λj). Define the weighted norm

‖v‖2H−1 = vTH−1v =
∑
j

λ−1
j ‖v‖2j ,

which is equivalent to the standard norm on R
N .

By assumption, there is a fixed point v∗ = Tv∗. Using πjH = λjπj and applying πj to
both sides of the definition of vk+1 gives

‖vk+1 − v∗‖2j = ‖(1− λj)πjv
k + λjπjTv

k

− (1− λj)πjv
∗ − λjπjTv

∗‖2.

Here and below, we use v∗ = Tv∗ freely as needed. As in [26], we use the equality ‖(1− θ)a+
θb‖2 = (1− θ)‖a‖2 + θ‖b‖2 − θ(1− θ)‖a− b‖2, which holds for θ between 0 and 1 and can be
verified by expanding both sides as a function of θ. In our case, we have θ = λj ∈ (0, 1) from
the assumptions on H. After conversion back to the norm ‖ · ‖j , this yields

‖vk+1 − v∗‖2j = (1− λj)‖vk − v∗‖2j + λj‖Tvk − Tv∗‖2j
− λj(1− λj)‖vk − Tvk‖2j .

Summing with weights λ−1
j gives

∑
j

λ−1
j ‖vk+1 − v∗‖2j =

∑
j

(λ−1
j − 1)‖vk − v∗‖2j +

∑
j

‖Tvk − Tv∗‖2j

−
∑
j

λ−1
j λj(1− λj)‖vk − Tvk‖2j .

Since T is nonexpansive, the right-hand side is bounded above by replacing Tvk − Tv∗ with
vk − v∗ in the second sum. This new sum then exactly cancels the term arising from −1 in
the first sum. Let c be the minimum over j of λj(1 − λj), and note that c > 0 since λj < 1
for each j by assumption. Putting these together and re-expressing in the H−1 norm gives

‖vk+1 − v∗‖2H−1 ≤ ‖vk − v∗‖2H−1 − c‖vk − Tvk‖2H−1 .
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The remainder of the proof is nearly identical to that in [26]; we include it for completeness.
Iterating in the first term on the right-hand side, we obtain

(21) ‖vk+1 − v∗‖2H−1 ≤ ‖v1 − v∗‖2H−1 − c

k∑
i=1

‖vj − Tvj‖2H−1 ,

and hence
k∑

i=1

‖vj − Tvj‖2H−1 ≤ 1

c
‖v1 − v∗‖2H−1 .

In particular, ‖vj − Tvj‖H−1 , and hence ‖vj − Tvj‖ tend to 0 as j tends to ∞. This also
implies that

min
j=1,...,k

‖vj − Tvj‖2H−1 ≤ 1

ck
‖v1 − v∗‖2H−1 .

Finally, note that (21) implies that the sequence {vk} is bounded, hence has a limit point,
say v̂. Since I − T is continuous and vk − Tvk converges to 0, we have v̂ = T v̂. Using v̂ in
place of v∗ in (21), we see that ‖vk − v̂‖H−1 decreases monotonically to 0, hence vk converges
to v̂.

Proof of Theorem 5. Let Tρ denote the map (1 − ρ)I + ρT. Let μj(ρ) = (1 − ρ) + ρλj ,
and note that Tρ has eigenvalues μ1, . . . , μn. Since the real part of λj is less than 1, the line
segment defined by μj(ρ) for ρ in the interval [0, 1] has a nonempty intersection with the open
unit disk in the complex plane. For each j, there is some εj > 0 so that this intersection
contains the set of points μj(ρ) for ρ in (0, εj ]. Taking ε0 to be the minimum of the εj and
taking ρ in the interval (0, ε0], there exists r < 1 for which |μj(ρ)| ≤ r < 1 for all j.

For this choice of ρ, let A be the Jacobian of Tρ at the fixed point, w∗, which we may
assume is the origin. The Schur triangulation gives a unitary matrix Q and an upper triangular
matrix U with U = Q−1AQ. Write U = Λ+U ′ with Λ diagonal and U ′ zero on the diagonal.
Let umax be the maximum of |U ′

i,j | over all entries in U ′. For ε > 0, define D to be the diagonal

n×n matrix with Di,i = εi. A computation shows that D−1UD has the same diagonal entries
as U but that each off-diagonal has the form Ui,jε

j−i with j > i, hence is bounded by εumax

in norm. This plus the differentiability of Tρ implies that for x in a neighborhood of 0,

‖D−1Q−1TρQDx‖ = ‖Λx+D−1U ′Dx‖+ o(‖x‖)
≤ (r + nεumax +R(‖x‖))‖x‖,

where R(‖x‖) decreases to 0 as ‖x‖ tends to 0. Choosing ε and ‖x‖ sufficiently small, we have
r + nεumax +R(‖x‖) < β for some β < 1. In this case we can iterate to obtain

‖D−1Q−1Tk
ρQDx‖ ≤ βk‖x‖.

In other words, for x0 in a neighborhood N of the origin, the iterates xk = D−1Q−1Tk
ρQDx0

converge geometrically to the origin. Multiplying by QD and labeling wk = QDxk, we
have wk = Tk

ρw
0 converges geometrically to 0 for all w0 in the neighborhood QDN of the

origin.
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